August 8, 2023 By Yasmin Rajabi 2 min read

In recent years, the rapid adoption of Kubernetes has emerged as a transformative force in the world of cloud computing. Organizations across industries have been drawn to Kubernetes’ promises of scalability, flexibility and streamlined application deployment. However, while Kubernetes offers an array of benefits in terms of application management and development efficiency, its implementation is not without challenges. As more businesses migrate to Kubernetes-driven environments, an unintended consequence has become increasingly apparent: a surge in cloud costs. The very features that make Kubernetes so attractive are also contributing to a complex and dynamic cloud infrastructure, leading to new cost drivers that demand careful attention and optimization strategies.

For example, inaccurate resource requests set on workload resources in Kubernetes can lead to massive over-provisioning of resources, causing significant increases in cloud costs. When resource requirements are overestimated, Kubernetes will scale the underlying infrastructure, leading to waste. This inefficient utilization can create workload scheduling issues, hamper cluster performance and trigger additional scaling events, further amplifying expenses. Mitigating these issues, particularly at scale, has proven to be a tremendous challenge.

Furthermore, right-sizing workload resources in Kubernetes is challenging at scale due to the sheer volume and diversity of applications. Each has varying resource demands, making it complex to accurately determine optimal resource allocations for efficient utilization and cost-effectiveness. As the number of deployments increases, manual monitoring and adjustment become impractical, necessitating automated tools and strategies to achieve effective right-sizing across the entire cluster.

Modernization requires continuous optimization

To continuously right-size Kubernetes workload resources at scale, three key elements are crucial. First, resource utilization needs to be continuously tracked across all workloads deployed on a cluster, enabling continuous assessment of resource needs accurately. Next, machine learning capabilities play a vital role in optimizing resource allocations by analyzing historical data and predicting future resource demands for each deployment. Lastly, automation is needed to proactively deploy changes and reduce toil on developers. These technologies ensure that Kubernetes resources are efficiently utilized, leading to cost-effectiveness and optimal workload performance across the entire infrastructure.

StormForge Optimize Live delivers intelligent, autonomous optimization at scale

StormForge Optimize Live combines automated workload analysis with machine learning and automation to continuously optimize workload resource configurations at enterprise scale.

Optimize Live is deployed as a simple agent, automatically scans your Kubernetes cluster for all workload types and analyzes their usage and settings with machine learning. Right-sizing recommendations are generated as patches and are updated continuously as new recommendations come in.

These recommendations can be implemented quickly and easily by integrating the recommendations into your configuration pipeline, or they can be implemented automatically, putting resource management on your Kubernetes cluster on autopilot.

StormForge users see much-improved ROI in their cloud-native investments while eliminating manual tuning toil—freeing up engineering bandwidth for higher-value initiatives.

Now available in the IBM Cloud catalog

Sign up for a 30-day free trial of StormForge Optimize Live to get started.

Deploy StormForge Optimize Live on IBM Cloud Kubernetes Service clusters via the IBM Cloud catalog
Was this article helpful?
YesNo

More from Cloud

Enhance your data security posture with a no-code approach to application-level encryption

4 min read - Data is the lifeblood of every organization. As your organization’s data footprint expands across the clouds and between your own business lines to drive value, it is essential to secure data at all stages of the cloud adoption and throughout the data lifecycle. While there are different mechanisms available to encrypt data throughout its lifecycle (in transit, at rest and in use), application-level encryption (ALE) provides an additional layer of protection by encrypting data at its source. ALE can enhance…

Attention new clients: exciting financial incentives for VMware Cloud Foundation on IBM Cloud

4 min read - New client specials: Get up to 50% off when you commit to a 1- or 3-year term contract on new VCF-as-a-Service offerings, plus an additional value of up to USD 200K in credits through 30 June 2025 when you migrate your VMware workloads to IBM Cloud®.1 Low starting prices: On-demand VCF-as-a-Service deployments begin under USD 200 per month.2 The IBM Cloud benefit: See the potential for a 201%3 return on investment (ROI) over 3 years with reduced downtime, cost and…

The history of the central processing unit (CPU)

10 min read - The central processing unit (CPU) is the computer’s brain. It handles the assignment and processing of tasks, in addition to functions that make a computer run. There’s no way to overstate the importance of the CPU to computing. Virtually all computer systems contain, at the least, some type of basic CPU. Regardless of whether they’re used in personal computers (PCs), laptops, tablets, smartphones or even in supercomputers whose output is so strong it must be measured in floating-point operations per…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters